Role of alpha9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation.

نویسندگان

  • D E Vetter
  • M C Liberman
  • J Mann
  • J Barhanin
  • J Boulter
  • M C Brown
  • J Saffiote-Kolman
  • S F Heinemann
  • A B Elgoyhen
چکیده

Cochlear outer hair cells (OHCs) express alpha9 nACh receptors and are contacted by descending, predominately cholinergic, efferent fibers originating in the CNS. Mice carrying a null mutation for the nACh alpha9 gene were produced to investigate its role(s) in auditory processing and development of hair cell innervation. In alpha9 knockout mice, most OHCs were innervated by one large terminal instead of multiple smaller terminals as in wild types, suggesting a role for the nACh alpha9 subunit in development of mature synaptic connections. Alpha9 knockout mice also failed to show suppression of cochlear responses (compound action potentials, distortion product otoacoustic emissions) during efferent fiber activation, demonstrating the key role alpha9 receptors play in mediating the only known effects of the olivocochlear system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system.

Although homomeric channels assembled from the alpha9 nicotinic acetylcholine receptor (nAChR) subunit are functional in vitro, electrophysiological, anatomical, and molecular data suggest that native cholinergic olivocochlear function is mediated via heteromeric nAChRs composed of both alpha9 and alpha10 subunits. To gain insight into alpha10 subunit function in vivo, we examined olivo cochlea...

متن کامل

Overexpression of SK2 channels enhances efferent suppression of cochlear responses without enhancing noise resistance.

Cochlear hair cells express SK2, a small-conductance Ca(2+)-activated K(+) channel thought to act in concert with Ca(2+)-permeable nicotinic acetylcholine receptors (nAChRs) alpha9 and alpha10 in mediating suppressive effects of the olivocochlear efferent innervation. To probe the in vivo role of SK2 channels in hearing, we examined gene expression, cochlear function, efferent suppression, and ...

متن کامل

Acetylcholine-evoked calcium increases in Deiters' cells of the guinea pig cochlea suggest alpha9-like receptors.

The medial efferent system innervates outer hair cells in the organ of Corti. Neurotransmission at this synapse is mediated by acetylcholine (ACh) acting on nicotinic ACh receptors containing the alpha9 subunit. In addition to the sensory cells, the supporting cells of the mammalian cochlea also receive efferent innervation but the neurotransmitter(s) at these synapses are not known. We show sl...

متن کامل

Biophysical and pharmacological characterization of nicotinic cholinergic receptors in rat cochlear inner hair cells.

Before the onset of hearing, a transient efferent innervation is found on inner hair cells (IHCs). This synapse is inhibitory and mediated by a nicotinic cholinergic receptor (nAChR) probably formed by the alpha9 and alpha10 subunits. We analysed the pharmacological and biophysical characteristics of the native nAChR using whole-cell recordings from IHCs in acutely excised apical turns of the r...

متن کامل

alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells.

We report the cloning and characterization of rat alpha10, a previously unidentified member of the nicotinic acetylcholine receptor (nAChR) subunit gene family. The protein encoded by the alpha10 nAChR subunit gene is most similar to the rat alpha9 nAChR, and both alpha9 and alpha10 subunit genes are transcribed in adult rat mechanosensory hair cells. Injection of Xenopus laevis oocytes with al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 1999